otNet 2022 H CONFERENCE 28th June SPONSORS COLLABORATORS #### Rodrigo Cabello Research Engineer @mrcabellom mrcabellom@plainconcepts.com The procedures to convert point clouds into application-specific deliverables are very costly in time/manual intervention. It is necessary to develop processes that extract the essential information automatically to create valuable data for decision-making. #### 3D representation - Better understanding of our environment. 3D data can provide more dimensional information. - 3D models can: - Represent the features of virtually any object. - Represent complex objects with a finite number of elements. (Point Cloud) - Improve the decision-making process. - Design error reduction: - industry and building sector. #### 3D data representation Point Cloud Voxels Meshes #### 3D data representation RGB-D provides a 2,5D information #### 3D data representation ## Point cloud DotNet2022 #DotNet2022 #### What is a point cloud? - A point cloud is a set of data points in space. - Points may represent a 3D shape or object. - Each point position has its set of Cartesian coordinates (X, Y, Z). - Points can include attributes like RGB, intensity, and classification. An example of a 1.2 billion data point cloud render of Beit Ghazaleh, ### Point cloud Big data DotNet2022 Poux, Florent. (2019). The Smart Point Cloud: Structuring 3D intelligent point data. #### Point cloud creation - Point clouds are generally produced by 3D scanners (LIDAR) or by photogrammetry software. - LiDar: - Uses lasers in order to measure distances from the sensor on the LiDAR device to objects in the environment. - Photogrammetry: - Three-dimensional scale model from a set of photographs taken from different angles. ## Artificial intelligence in point cloud #### Point cloud + Al - Automated insights extraction in large point clouds. - ML-assisted capacity can help reduce human errors by automatically pre-labeling. - Basic object recognition: Walls, floor, cylinder, pipes. - Deep learning: Custom object detection and segmentation. #### Challenges Multiple file formats Unstructured data Millions of points Noisy data Sensors #### Computer vision tasks Classification Object detection and localization Clustering segmentation Semantic segmentation #### Point cloud Al project ## Clustering #### Point cloud. Clustering - Unsupervised and self-learning methods are very important for solving automation challenges. - Helping to annotate a large point cloud. - Better data understanding - Data visualization. - Infer data properties. - Several clustering algorithms (K-means, DBSCAN...) - The number of clusters - The stability of the algorithm - The compatibility of the results with domain-specific knowledge. Poux, Florent. ### Demo: K-means ## Segmentation #### Segmentation - RANSAC - Goal: The process of dividing an image into different regions based on the characteristics of points. - RANSAC stands for RANdom Sampling and Consensus. - It's a robust model-fitting algorithm. - It can be used for detecting basic primitives such as planes or cylinders. - RANSAC has a good performance detecting outliers. #### Segmentation – Correspondence Grouping - Goal: search similar objects in the point cloud. - Cluster a set of point-to-point correspondences obtained after the 3D descriptor. - Detect model instances that are represented in the point cloud. - For each cluster, the algorithm gets the transformation matrix (rotation + translation) of that model in the point cloud. ## Demo: Segmentation ## Object classification Deep Learning #### Object classification - Deep Learning - Deep learning architectures are capable of reasoning and can learn features about 3D geometric data. - Unordered point cloud - Data transformation to 3D voxel grid projections. - Translation, rotation, and permutation invariance. - Sort input into canonical order. - Large point clouds. Memory consumption. - Slices, segmentation #### Object classification - Deep Learning #### Object classification - Deep Learning - SE-PseudoGrid object classification for Piping systems. - Main features: - Inputs: 3D point cloud. - Squeeze-and-Excitation blocks. ## Demo: Pipe classification #### Object localization – Real time - 3-D real-time Object detection is a key capability for autonomous driving. - Point clouds mostly come from lidars used in some IoT modules. - Applications: - Autonomous machines. - Perception modules. - 3D modeling. - Leverage long-range and high-precision data sets to achieve 3D object detection for perception, mapping, and localization algorithms. #### Cuda-Point Pillars ## Demo: Point-Pillars Nvidia Jetson nano #### What is next? - Bigiding winformation modeling - AC menupher et htte ects de tient connect sition in bout le phonomient de la proposition del la proposition de la prop Construction progress tracking ### Questions & Answers ## Thanks and ... See you soon! Thanks also to the sponsors. Without whom this would not have been posible. intel